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An imputation platform to enhance integration of
rice genetic resources
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As sequencing and genotyping technologies evolve, crop genetics researchers accumulate

increasing numbers of genomic data sets from various genotyping platforms on different

germplasm panels. Imputation is an effective approach to increase marker density of existing

data sets toward the goal of integrating resources for downstream applications. While a

number of imputation software packages are available, the limitations to utilization for the

rice community include high computational demand and lack of a reference panel. To address

these challenges, we develop the Rice Imputation Server, a publicly available web application

leveraging genetic information from a globally diverse rice reference panel assembled here.

This resource allows researchers to benefit from increased marker density without needing to

perform imputation on their own machines. We demonstrate improvements that imputed

data provide to rice genome-wide association (GWA) results of grain amylose content and

show that the major functional nucleotide polymorphism is tagged only in the imputed data

set.
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Genetic imputation is an approach to infer genotypes at
unobserved sites in a study data set using haplotype
information from a typed reference data set. Imputed

panels can be used to improve resolution for genome-wide
association (GWA) and to integrate data sets1,2. Leveraging
haplotype diversity information from publicly available cosmo-
politan reference panels for imputation has been widely used in
human genetics research, beginning with reference panels derived
from the first HapMap Projects and then from the 1000 Genomes
Project as sequencing technologies improved3–7. In contrast to
the consortium approach taken by the human genetics commu-
nity, crop researchers have conventionally addressed resource
development in a more distributed fashion. This may be related to
the intrinsically flexible nature of plant populations; a single
species can exhibit a range of mating habits and environmental
adaptations, and individuals can be readily propagated. These
features give rise to the many types of plant collections that are
genotyped, e.g., biparental and multiparental mapping popula-
tions, locally adapted landrace collections, diversity panels, and
various generations of elite breeding material. As a result, myriad
genomic data sets of varying quality and density on independent
collections of samples have accrued. Imputation has the potential
to provide a generalized solution to enrich genomic data sets and
facilitate data integration across germplasm resources, especially
important for sparse data sets generated from platforms such as
genotyping-by-sequencing (GBS) or skim sequencing used com-
monly in plant research8–10.

Cultivated Asian rice (Oryza sativa L.), the first crop genome to
be fully sequenced11,12, has been a pioneer species in genomic
research. It is rich in open-access resources, including diverse
germplasm samples available as publicly available purified
(homozygous) seed stocks13, data sets from single-nucleotide
polymorphism (SNP) array genotyping and resequencing13–18,
and a recent pan-genome initiative that aims to provide a union
set of all genes within the species19. Despite these features, there
currently exists no rice data set that has been vetted to serve as a
cosmopolitan reference panel for imputation and no systematic
approach to facilitate integration across different resources. One
of the specific challenges for the rice community is the fact that O.
sativa is comprised of deeply differentiated subpopulations across
two varietal groups (VG) due to the combined effects of natural
and human selection: Indica VG: indica (ind), aus (aus); Japonica
VG: temperate japonica (tej), tropical japonica (trj) and aromatic
(aro). The five subpopulations are distinguishable based on eco-
logical adaptation, grain quality characteristics, and complex
physiological parameters, as well as population genetics metrics
such as linkage disequilibrium (LD) decay13.

The most comprehensive O. sativa genomic data sets released
to date, accompanied by publicly available germplasm, are the
3000 Rice Genomes (3KRG), genotyped using Illumina short-
read next-generation resequencing technology14,20, and the Rice
Diversity Panels 1 and 2, ~1500 diverse rice varieties genotyped
using a genome-wide high-density rice array (HDRA)13 (here-
after referred to as the HDRA panel). These panels sample across
the geographic and genetic space occupied by O. sativa’s five
distinct subpopulations. The 3KRG Project yielded a set of 29M
biallelic SNP markers, an 18M base SNP set, and a 4.8 M filtered,
high-quality SNP set as part of its Release 1.0 (http://snp-seek.irri.
org/download.zul). The HDRA Panel was assayed using a 700 K
SNP array. Collectively, the 3KRG and HDRA Panels are believed
to be representative of global O. sativa diversity.

Here, we set out to provide easily accessible imputation capa-
city for rice researchers worldwide. We examine parameter effects
on imputation in rice using IMPUTE2 and impute the HDRA
Panel to 4.8 M SNPs using 3KRG as the reference panel. We
demonstrate the benefits that imputed data can provide to

enhance the resolution of rice GWA studies using grain amylose
content as a case study. We assemble a Rice Reference Panel
(RICE-RP) by merging the HDRA and 3KRG data sets via reci-
procal imputation (Table 1, Fig. 1) and develop a web-based
service called the Rice Imputation Server to increase imputation
accessibility to rice researchers throughout the world. This work
paves the way to boosting research efficiencies by enabling
investigators within both basic and applied research domains to
integrate discrete data sets and to augment marker density,
improving the power and resolution of genomic studies in rice.

Results
Rice imputation with IMPUTE2. IMPUTE2 was primarily
developed for imputation in humans. We carried out a series of
experiments to investigate the parameter settings that provide the
best performance in rice samples, using a gold standard set of
accessions that overlapped between the HDRA and 3KRG Panels
as our study panel (individuals, n= 50; markers, m= 160,267)
(Supplementary Fig. 1; Supplementary Data 1). For the reference
panel, we used the 3KRG accessions but removed the 50 study
panel individuals (n= 2973; m= 4,817,964) to ensure that there
would be no identical samples across reference and study panels.
We first assessed whether there was any difference between the
use of phased and unphased reference panels. T he expectation
was that there should be no difference in accuracy due to O.
sativa being an inbreeding species such that genotypes are gen-
erally equivalent to haplotypes. To test this, we targeted three 2-
Mb segments across the genome (regions on chr 1: 0.5–2.5 Mb;
chr 3: 7–9Mb; chr 12: 20.5–22.5 Mb) and observed no significant
difference between using unphased and phased reference panels
when comparing accuracies between imputed HDRA individuals
and their corresponding known genotypes from the 3KRG rese-
quencing panel (Supplementary Fig. 2a). Though there was no
loss in accuracy, imputation using unphased reference panels was
orders of magnitude slower. We therefore opted to use phased
reference panels for the remainder of our imputation testing.

Imputation depends on there being haplotype segments in the
reference panel that are similar to those found in the study panel.
To explore parameter settings on imputation accuracy, we
imputed chromosome 3 in 15 equally sized chunks. We used
the full reference panel (n= 2973) and varied the parameter k,
the number of conditioning states chosen for each study
haplotype per Monte Carlo Markov chain (MCMC) iteration, at
values of 5, 50, 100, 200, and 400 and an effective population size
(Ne) of 10,000, 20,000, and 30,000 (maximum allowed by
IMPUTE2). Previous estimates of effective population size for
domesticated rice and its wild relatives ranged from 12,000 to
46,00021. Consistent with previous reporting that the IMPUTE2
algorithm was robust to changes in Ne

22, we observed no
major effect of Ne on chromosome 3 imputation accuracy
(site-based r2). There was a slight positive effect of increasing

Table 1 Description of data sets used in this study

Data set Marker
number

Sample
number

Unique
sample
number

HDRA 700,000 1568 1553
HDRA_filtered 160,267 1568 1553
HDRA_imputed 4,829,392 1568 1553
3KRG 4,817,964 3023 3023
RICE-RP 5,231,433 4591 4481

Sample number refers to the number of samples genotyped within each data set. A unique
sample number accounts for the fact that biological replicates were included within and across
data sets as technical controls. For a graphical overview, see Supplementary Fig. 1
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k (Supplementary Fig. 2b–c). Median accuracies for all Ne by k
combinations were 1.0, computed for polymorphic markers in the
Gold Standard Panel. To assess the effect of reference panel size
(R), we randomly subsampled the full reference panel (n= 2973)
at four sizes (R= 50, 100, and 500) 50 times each and imputed a
2Mb test region on chromosome 3 (position 7–9Mb), with fixed
k= 100 and Ne= 10,000. There was a positive effect of increased
R on imputation accuracy, especially for markers with low minor
allele frequency (MAF) (Supplementary Fig. 2d). We next
imputed the full length of chromosomes 1 and 12 using the
same gold standard study panel (Supplementary Table 1) to
ensure that high accuracies at these selected parameter settings
(k= 100; Ne= 10,000; R= full) were not unique to chromosome
3. The resulting site r2 across chromosomes 1 and 12 was nearly
1.0 for polymorphic markers (Supplementary Table 2). High
accuracies were maintained after removing potential close
relatives of the Gold Standard Panel from the reference panel
prior to imputation (Supplementary Fig. 3).

Because the Gold Standard Panel was largely represented by
tropical japonica and indica, we next checked whether
subpopulation-specific limitations to imputation might exist. To
do so, we generated subpopulation-specific study panels by
randomly sampling (n= 50 per study panel) from the 3KRG and
imputing them independently using separate reference panels
composed of the 3KRG minus the individuals from the study
panel of interest, leaving 2973 individuals in each reference panel.
The study panels were TEJ, TRJ, ARO, AUS, IND1, IND2, and
IND3, representing temperate japonica, tropical japonica, aro-
matic, aus, and three indica subgroups, respectively. Three study
panels were used for the indica subpopulation because the large
proportion of indicas found in 3KRG (59.7%) resulted in further

stratification of the indica subpopulation (Supplementary Fig. 1c).
Imputation accuracy across the MAF spectrum was generally
high across all seven study panels (Supplementary Fig. 4,
Supplementary Fig. 5); however, IND1 was observed to have a
lower accuracy than IND2 and IND3 at markers with MAF < 0.20
(Supplementary Fig. 5b–d).

To see whether markers of low imputation accuracy were
dispersed or grouped, we examined the distribution of accuracy
values across the physical distance of chromosome three for
IND1, IND2, and IND3 (Supplementary Fig. 6a). A half dozen
clusters of markers with low accuracy were observed in IND1,
with half as many observed in IND2 or IND3. Interestingly, two
clusters toward the end of the chromosome appear to be shared,
one cluster between IND1 and IND2, and a different cluster
between IND1 and IND3. Geographical association of the three
indica subgroups (Supplementary Fig. 6b) and the fact that IND2
and IND3 are more widely dispersed while IND1 is primarily
found in North Asia could suggest that genetic architecture
related to local adaptation may underlie different imputation
performance. IND2 and IND3 accessions were additionally found
outside of Asia, as far as South America and Africa. Further
analyses would need to be done to document whether a higher
frequency of de novo mutations or introgressions (e.g., perhaps
from Japonica subpopulations) may have given rise to unexpected
haplotypes in IND1 and whether these relate to different selection
regimes, proximity to wild ancestors, or specific adaptation to
northern versus southern climes in Asia.

Using parameter values of k at 100 and Ne of 10,000, we next
imputed the full HDRA Panel (n= 1568) filtered to 160 K SNPs
out to 4.8 M SNPs using the full 3KRG as the reference panel
(Table 1, Supplementary Fig. 1). Average concordance as reported
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Fig. 1 Oryza sativa diversity panels used in this study. Geographical distribution of the country of origin for the 3KRG (3000 Rice Genomes Project;
n= 3023) and HDRA (High-Density Rice Array; n= 1568) panels. Pie charts depict subpopulation composition of each panel; ind1, ind2 and ind3 =
geographically differentiated groups within indica; adx = admixed within Varietal Group; Black pie segments = admixed across Indica-Japonica. Boxplots
show distributions of per-sample homozygosity in the 3KRG and HDRA panels (medians at 99.5% and 98.5%, respectively). Boxplot features: thick line=
median; box edges= 25th and 75th quantiles; whiskers= lowest and highest observed values within 1.5 interquartile range from 25th and 75th quantiles,
respectively
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by IMPUTE2 across all 180 imputation runs (12 chromosomes ×
15 chunks) was 97.2% (Supplementary Data 2). We next turned
our attention to examining the downstream effects of utilizing
this imputed data for association analysis.

Association analysis of grain amylose content. Signal resolution
of genotype–phenotype association benefits from an improved
ability to pick up historical recombination breakpoints. In rice, a
previous augmentation from 44 K to 700 K genome-wide SNPs in
conjunction with an increase in the number of observations (from
413 to 1568 accessions) resulted in markedly improved associa-
tions and enabled the approach of subpopulation-specific GWA
studies13,16. To test whether additional expansion of marker
number, without a concurrent increase in panel size, would result
in further improvement in genotype–phenotype association sig-
nal, we evaluated grain amylose content on 1222 accessions of the
HDRA Panel and performed GWA for this trait. Using the ori-
ginal 700 K SNP array data set13, we analyzed genome-wide scans
with all individuals (ALL; n= 1122) and also on specific
subpopulations classified by the original study13, indica (IND;
n= 326), aus (AUS; n= 158), temperate japonica (TEJ; n= 191),
and tropical japonica (TRJ; n= 247) (Supplementary Fig. 7). We
detected strong association peaks from each genome scan except
for AUS, for which there were no well-defined peaks. A highly
significant region was localized on chromosome six, at ~1.7 Mb
and was detected in ALL, IND, TEJ, and TRJ. A second, well-
supported peak was also found at ~6.8 Mb in each panel except
for TEJ. These two genomic regions harbor known genes that
affect amylose content: a major-effect gene, Wx
(LOC_OS06g04200: position 1,765,622–1,770,656), and SSIIa
(LOC_Os06g12450: position 6,748,358–6,753,338)23–27. We

therefore targeted chromosome six for further study on the
potential of imputed data to improve GWA studies or down-
stream analyses.

Detection of the primary FNP in Wx. Association analysis of
chromosome six was next carried out using imputed data for IND.
We rationalized that if a sevenfold increase in marker density had
a potential benefit to resolving associations in rice, this improve-
ment would be observed in the indica clade, as it has the most
rapid average LD decay among all subpopulations13,16,28. Using
the imputed data (imputed chr 6= 445,466 SNPs), we detected
eight peaks for amylose content on chromosome six, including
regions containing Wx and SSIIa. Three of these associations were
novel to the high-density data set, i.e., they were not detected using
the original unimputed data. For the major association region
containing Wx, the general width and shape of the peak remained
largely the same using imputed data (Fig. 2), indicating that LD,
not the number of markers, likely limits the resolution of GWA
studies in rice. Estimated local LD value of this associated region
(Methods) was 207 kb (Supplementary Fig. 8; Supplementary
Table 3). The total LD region encompassed 62 gene models,
including transposons and hypothetical proteins (Supplementary
Data 3). Despite the apparent limitation of imputed data to resolve
associations due to high LD, we detected improvement to the most
significant SNP (msSNP) for the Wx locus compared to original
associations, increasing from –log10(p-val) of 52.2 to 64.8 (Fig. 3).
The msSNP also shifted 96 kb in position, from 1,669,314 to
1,765,761 bp (Fig. 3a, c). This new, imputed msSNP fell within the
Wx genic region (Fig. 3c) and by cross-referencing it to existing
literature, we determined that this G/T msSNP at 1,765,761
matched a previously reported major functional nucleotide
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polymorphism (FNP) in the Wx gene29–31, where AGGTATA
versus AGTTATA affects Wx transcript splicing and accounts for
80% of amylose content variation in non-waxy rice varieties32.
Being able to directly interrogate the FNP accounts for the
observed improvement in signal strength using imputed data.

Increased SNP density resulting from imputation led to a
higher number of markers that fell within gene models. Using the
original 700 K SNP data set, there were an average of six SNPs per
gene in this ~400-kb region. With the imputed SNP data set, this
average increased to 30 SNPs per gene (Supplementary Fig. 9).
Based on the original 700 K SNP data set, ten SNPs were found
within theWx genic region (chr 6: 1,765,622–1,770,656), only one
of which passed the false discovery rate (FDR) threshold. With
imputed data, we detected 45 SNPs (Fig. 4a), 22 of which were
significantly associated with amylose content in indica. Having
more significant genic SNPs available is informative when
analyzing candidate gene haplotypes, and can be especially useful
in cases where an FNP is not imputed directly but can be tracked
using haplotypes.

Gene haplotype analysis of Wx. Using the 22 significant genic
SNPs detected within Wx for IND, we analyzed gene haplotypes
to see if any of them were associated with amylose content.
Previous studies had reported low amylose-associated poly-
morphisms to originate from the Japonica clade33; we therefore
included temperate japonica (n= 191) and tropical japonica
(n= 247) to help define haplotypes. In total, we identified six
major gene haplotypes, WxH.1-H.6, all of which were present in
indica, although at varying frequencies. The 438 Japonica acces-
sions included in the analysis only harbored H.4 and H.5 (Sup-
plementary Fig. 10a; Supplementary Data 4), which were also the
lowest-frequency haplotypes in indica, suggesting that their pre-
sence in the indica subpopulation is likely the result of Japonica
introgression. Meanwhile, H.1, H.2, and H.3 were the most fre-
quent haplotypes in indica, together accounting for 84%, and
presumed “wild-type” classes. These three groups were associated
with the highest amylose content (median~25%; Supplementary

Fig. 10b), consistent with high amylose being the ancestral phe-
notypic state33. H.6 was found only in indica and was associated
with low amylose content (median < 5%), while H.4 and H.5
displayed intermediate classes of amylose content (median~20
and 14% respectively). H.6 only differed from H.4 and H.5 by one
SNP at 1,768,998, so it is likely that H.6 is also the result of
Japonica introgression into indica with subsequent acquisition of
the extra variant. This was additionally supported by phylogenetic
tree construction using all 45 genic SNPs (22 significantly asso-
ciated SNPs+ remaining 23 nonsignificant SNPs), which showed
indica H.4, H.5, and H.6 accessions to cluster with the Japonica
H.4 and H.5 individuals (Supplementary Fig. 10d).

When we conditioned our model on the FNP and re-ran
association analysis, we found that most associations disappeared,
consistent with the expectation if those markers were in LD with
the FNP (Fig. 4b, c). Interestingly, we also discovered a new SNP
located at position 1,768,000 bp in the fifth exon of the Wx gene
that was not significantly associated with amylose content in the
original analysis but emerged as significantly associated upon
conditioning with the FNP (Fig. 4c).

Detection of an FNP in SSIIa. The secondary association peak on
chromosome 6 contained SSIIa, the gene primarily responsible for
gelatinization temperature and known to be pleiotropic for amylose
content24–26. Here, we found only modest improvement in asso-
ciation strength compared to an unimputed GWA study (Fig. 2).
The msSNP of this region increased its –log10(p-val) from 11.3 to
12.2. This small difference is likely due to the fact that the original
msSNP from the HDRA data set was already located very close to
the known functional gene (Supplementary Fig. 11a), just ~10 kb
downstream, and theoretically strongly tagged the underlying FNP.
The new msSNP detected using imputed data was found at position
6,752,887, and localized within exon eight of SSIIa (Supplementary
Fig. 11b–d). From the imputed data set, there were 62 markers
within SSIIa, two of which were significant for amylose content
(Supplementary Fig. 11d). The second of these SNPs had a –log10(p-
val) nearly equal to that of the msSNP, at 12.05, and localized at
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position 6,752,888, just next to the msSNP. Upon comparison to
known functional variants of SSIIa, we discovered that these two
adjacent SNPs matched a previously reported GC/TT polymorph-
ism that explained 62.4% of variation in pasting temperature,
another cooking and eating quality trait, which corresponded to an
amino acid change at Leu781 of SSIIa34. In our IND panel, the
major haplotype SS.1 (GC; 72% frequency) was associated with
higher amylose content and the minor haplotype SS.2 (TT; 28%
frequency) was associated with lower amylose content, though
distributions were overlapping (Supplementary Fig. 11e), consistent
with the relatively minor role reported for SSIIa in modulating
amylose content. We checked 431 Japonicas (185 temperate and 246
tropical japonica) that had genotype data at this FNP to see if these
haplotypes were aligned with either Japonica subpopulation. SS.1
was observed in the vast majority of tropical japonicas (91% SS.1
and 9% SS.2), while temperate japonicas had a random assortment
of both haplotypes (49% SS.1 and 51% SS.2).

The RICE-RP and Rice Imputation Server. While the original
assembly of HDRA aimed to create a germplasm set that was
relatively balanced across the five recognized subpopulations, the
composition of 3KRG favored sampling of indica, which com-
prised over 50% of the total panel (Fig. 1). To test if adding
HDRA samples to the 3KRG data set to create a combined
reference panel offered any benefit for rice imputation, we
merged the original 700 K data set on HDRA with the 4.8 M data
set of 3KRG using IMPUTE2’s option for merging reference
panels via reciprocal imputation. We then asked whether this
combined data set, the RICE-RP, with 4481 unique samples at
5,231,433 markers, could improve imputation of the
IND1 subgroup. IND1 was chosen as the study panel here
because it had performed the least favorably compared to the
other indica subgroups and other subpopulations (Supplementary
Fig. 4–6) and therefore had room for improvement. For the
reference panels, we used RICE-RP (minus IND1 study indivi-
duals) and 3KRG (minus IND1 study individuals), and tested
them for chromosome three. We observed that at the low end of
the MAF spectrum (MAF < 0.158), RICE-RP outperformed
3KRG (Fig. 5a). At the higher end of the MAF spectrum,
imputation with RICE-RP resulted in wider accuracy distribu-
tions than imputation with 3KRG alone although accuracies were
still high (>95% r2) (Fig. 5b). Given that minor allele frequency
distribution in IND1, like other rice subpopulations, lays
heavily toward the low end of the spectrum (Fig. 5c, Supple-
mentary Fig. 4–5, 79% of the original 3KRG markers on chro-
mosome three had 0.158 MAF), overall performance appears
to be improved by the addition of HDRA individuals to the
3KRG.

To see whether rice imputation using the parameters selected
in this study for imputing array data was generalizable for sparse
data sets, we selected a subset of 16 tropical japonica varieties
from a previously published GBS data set consisting of 38,618
SNPs35. These 16 varieties were chosen because they fulfilled two
criteria: (1) they were not part of RICE-RP and (2) they were part
of an independent resequencing effort15. We used the resequen-
cing data set from Duitama et al. as validation genotypes for
assessing imputation accuracy. In total, 1.2 M SNPs in the
resulting imputed data set could be used for accuracy (r2)
computation because they were polymorphic in the 16 varieties
and were also typed in the resequencing data (Supplementary
Fig. 12). Genome-wide median accuracy was 1.0, consistent with
the high imputation accuracy of tropical japonica shown in
Supplementary Fig. 4b.

To extend the capability of performing imputation out to the
greater rice research and breeding community, we developed a
web-based application called the Rice Imputation Server that
utilizes IMPUTE2 at the backend (Fig. 6). This publicly available
service allows users to upload their own data, e.g., genome-wide
SNPs generated by GBS methods, and receive imputed data sets
back. We integrated the 3KRG and HDRA Panels as a single,
phased RICE-RP at 5,231,433 SNPs via reciprocal imputation and
phasing and provided four “SNP filters” to facilitate downstream
trimming of imputed data sets, which may be desirable depending
on the end application. These SNP filters represent the set of (1)
genic SNPs, (2) exonic SNPs, and (3) putative splice sites. Other
options for filtering include basic Plink1.9 utilities such as LD-
based pruning and random thinning, which the user may also opt
to perform after imputation (Fig. 6). This service is available at
http://rice-impute.biotech.cornell.edu.

Discussion
In this study, we demonstrate the high accuracy of imputation for
rice genetic data using IMPUTE2. We first determined optimal
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parameters for rice imputation using a gold standard set of
germplasm with known “true genotypes” and then imputed the
entire HDRA Panel of accessions out to >4.8 M markers. This
work elevates the utility of a previously released genetic data set
that is associated with publicly available, purified genetic stocks
designed for GWA studies in rice13. Using the unimputed and
imputed data sets, we compared association analysis results for
amylose content, a critical eating and cooking quality trait in
rice36. Although addition of markers cannot overcome the reso-
lution deficiencies caused by naturally high LD in rice popula-
tions, increasing marker density creates a greater opportunity to
detect causal SNPs or functional polymorphisms responsible for
phenotypic variation. This in turn boosts signal strength of the
msSNPs at association peaks.

Having genome-wide imputed SNP information across the
HDRA Panel can facilitate population genetic analyses on genes
or regions of interest identified by GWA studies, without the need
for additional sample sequencing. Using the set of significant
genic SNPs in Wx from the imputed data set, we generated gene
haplotypes that resolved all four classic phenotypic groupings for
amylose content in indica rice and performed an allele-specific
Extended Haplotype Homozygosity analysis across a 200-kb
region containing the Wx gene using the msSNP as the focal SNP
(Supplementary Fig. 10c). Haplotypes that strongly associate with
traits such as grain quality are critically valuable to rice breeders,
who can use this information to make selections even if the FNP
itself is unknown in their material. These types of population
genetic analyses are not possible using the original, unimputed
HDRA data set due to the ascertainment bias inherent in the
array design13, e.g., selection for non-synonymous SNPs.

One limitation to the data sets (Table 1) developed in this study
is that variants present depend on SNPs found in the 3KRG 4.8 M
data set, which had been originally filtered for 0.01 global minor
allele frequency. This dependency can lead to the potential of
missing rare variants in the final imputed data set. Rare SNPs,
e.g., those private to a specific subpopulation at low frequency
that were filtered out of the 3KRG 4.8 M SNP set would be absent.
It would be of interest in the future to generate an updated RICE-

RP derived from an unfiltered initial reference panel, or one that
accounted for subpopulation-specific SNP frequency information.
Such strategies would help retain rare variants in final imputed
data sets.

One interesting insight that emerged from investigating
subpopulation-specific imputation accuracy is that imputation
may offer a means to identify gaps in gene bank collections with
respect to geographic (and eco-climactic) variation and to
rationally sample additional accessions for further resequencing.
In our study, we observed lower imputation accuracies in IND1,
a subgroup of the indica subpopulation that is localized in China,
suggesting that data gaps exist for this subgroup. Passport
information, which includes collection location (longitude and
latitude), is available for about 50% of gene bank samples and
could be used to resolve location data for those that only have
country-level information in a manner similar to that of Elhaik
et al37. With the imputed location data, the Focused Identifica-
tion of Germplasm Samples38 could be invoked with new sam-
ples chosen to fill gaps in sampling across eco-regional and
climactic clines. If a locale already has several accessions that
have been resequenced at high coverage, then new accessions
from the same area or from a similar eco-climactic zone could
be resequenced at lower depth. For accessions that fill pro-
spective gaps in the collection, deeper resequencing would likely
be beneficial, so that novel, rare alleles may be identified. These
approaches can therefore assist gene banks in extending geno-
typic data to optimally cover the species diversity, allowing for
heightened value and better use of resources.

Having the ability to efficiently impute rice genetic data opens
the door to a wide range of applications that extend beyond the
few demonstrated in this study. Perhaps of the greatest immediate
impact, it facilitates integration of data sets. Crop researchers
commonly handle a range of germplasm types, resulting in
genomic data sets of varying marker densities on independent
collections of samples, each developed to address specific pro-
blems of interest. Imputation facilitates the integration of these
resources by mapping them onto a common genomic framework
without the added time and expense of re-genotyping. It also
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offers the option of waiting to make a final selection of germ-
plasm or SNPs until after integration, tailoring the best selection
possible for the researcher’s need. Imputation provides the means
to update previously genotyped panels quickly and at little cost,
often dramatically increasing the resolution of existing resources.
As GWA experiments in rice continue to accumulate in the lit-
erature, imputation can enable future GWA meta-analysis39 on
agronomically critical traits by allowing the combination of
germplasm and phenotypes across published studies.

Increasing access to imputation tools is one measure to
encourage interoperability of crop genomic resources, promote
re-use of publicly available and internally collected data, augment
the impact of individual data sets, and inform future gene bank
resequencing efforts. To facilitate imputation analysis for rice
researchers, we developed a publicly available imputation web
tool called Rice Imputation Server. This service harnesses the
results of this study and leverages haplotype diversity found
within the Rice Reference Panel. One critical feature that will
likely contribute to long-term utility of this tool is its modularity;
it is set up to readily accept upgrades to either the imputation
software (e.g., a new version of IMPUTE2) or data (e.g., a higher

density version of RICE-RP) as they develop. Future directions
for improvements to the service may include offering region-
specific imputation for researchers interested in data at certain
loci of interest rather than genome-wide and incorporating indel
or other non-SNP variant imputation capacities. To help users
manage their resulting large data bundle, we offer “SNP filter”
text files that can feed directly into Plink1.9 along with the user’s
imputed plink binary data set as a functional approach to filtering
genome-wide SNPs. Making imputation capability more acces-
sible to plant research communities may improve the power of
phenotype–genotype association studies, enhancing the pro-
ductivity of basic investigations into molecular mechanisms and
simultaneously accelerating translation into productive, stress-
tolerant, and nutritional plant varieties that are urgently needed
to enhance global food security.

Methods
Genotype information. SNP information on 1568 individuals genotyped on the
High-Density Rice Array13 and 3024 individuals genotyped as part of the 3000 Rice
Genomes Project14 were previously published and now have been assigned
germplasm doi's for the first time (Supplementary Data 1). These two germplasm
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panels are hereafter referred to as the HDRA and 3KRG Panels, respectively. An
intersecting set of markers between the 18M SNP resequencing data set (http://
snp-seek.irri.org/_download.zul) and the 700 K SNP array data set were filtered for
a maximum of 5% missing data per marker in each of the two panels and a
minimum of 1% minor allele frequency across the combined data set. The resultant
set of ~160 K high-quality SNPs was used in imputation analyses (position list of
160 K SNPs can be found at SNP Seek; http://snp-seek.irri.org/_download.zul).
Population structure was analyzed on the 4591 combined sample set using fas-
tStructureand the cut-off used to assign samples to specific subpopulations was 75%
ancestry. One 3KRG accession (IRIS_313–8921) was dropped from this study due
to excessive missing data at the 160 K SNPs. The filtered, 4.8 M SNP data set from
3KRG Release 1.0 was used as the high-density reference set of SNPs and was
selected due to its filter on missing data (max 0.2). By design, the 4.8 M SNP data
set had been filtered for 0.01 global minor allele frequency in the 3KRG Panel. An
overview of data sets used in this study is found in Table 1 and Supplementary
Fig. 1.

Phenotype data. Samples were grown during the 2011 wet season at the Inter-
national Rice Research Institute in the Philippines using standard crop manage-
ment practices for irrigation and pest control. Grain was harvested at maturity and
stored for 6 weeks under controlled relative humidity to equilibrate for moisture
content. In total, 10 g samples of paddy rice were dehulled and polished by placing
grains into 10 mL capsules with fused aluminum oxide and abrading gently for 1 h
in a paint shaker. Twenty whole-milled rice kernels were ground in a Udy cyclone
mill (sieve mesh size 60), 100 mg of rice powder were weighed into a 100 mL
volumetric flask, and 1 mL of 95% ethanol and 9 mL of 1 M sodium hydroxide are
added. Amylose content was measured using the standard iodine colorimetric
method ISO 6647-2-201140. Absorbance of the solution was measured using an
Auto Analyzer 3 (Bran+ Luebbe, Norderstedt, Germany) at 600 nm. Amylose
content was quantified from a standard curve generated from absorbance values of
four standard rice varieties (IR65, IR24, IR64, and IR8).

Imputation and RICE-RP assembly. IMPUTE241 and SHAPEIT42 were used for
all imputation and phasing activities, respectively. Recombination rate across the
rice genome was estimated using genetic data from a Recombinant Inbred Line
population43 and mean-adjusted to account for varying reported values for
genome-wide recombination rate average44–47; this was used as the fine-scale
recombination map input for imputation. To assess the performance of IMPUTE2
on rice data, we tested different imputation parameter settings on a “gold standard”
study panel containing 50 accessions that overlapped between the 3KRG and
HDRA panels (Supplementary Table 1). The reference panel use for parameter
testing was the 3KRG Panel minus the 50 accessions that were part of the gold
standard study panel (n= 2973). We tested combinations of the following para-
meter values/settings: phased versus unphased reference panels, size of the original
reference panel (n= 100, 500), effective population size (Ne= 10,000, 20,000, and
30,000), and number of reference individuals sampled per MCMC iteration of the
imputation to use per study individual (k= 5, 50, 100, and 200). As recommended
by IMPUTE2 developers, imputation was performed in small chunks per chro-
mosome by dividing each chromosome into 15 equally sized regions ranging from
1.5 to 2.88 Mb depending on chromosome size, and parallelized across 15 cores per
chromosome. The resultant imputed chunks were merged to produce one file per
chromosome. The final selected parameters for imputation of the entire HDRA
Panel were k= 100, Ne= 10000, reference panel= phased, reference panel size=
full 3KRG Panel (minus one individual removed due to 98% missing data at the
160 K SNP data set), and imputation chunks per chromosome= 15. Imputation
accuracy throughout this study was assessed as marker-based r2 between imputed
genotypes (after converting dosage.gen files from IMPUTE2 to genotypes in plink
format via plink1.9) and true genotypes. To assemble the RICE-RP, we used the
merge reference panel option of IMPUTE2 with the HDRA Panel at 700 K SNPs
and the 3KRG Panel at 4.8 M SNPs. Merging via reciprocal imputation was per-
formed in ten chunks per chromosome, using the same parameters as for impu-
tation: k= 100; Ne= 10000.

Association analysis. Using the 700 K SNP array data set13, genome-wide
scans for amylose content were analyzed using all phenotyped individuals (ALL;
n= 1122) as well as on individual subpopulations, indica (IND; n= 326), aus
(AUS; n= 158), temperate japonica (TEJ; n= 191), and tropical japonica (TRJ;
n= 247) (Supplementary Fig. 6). Using the imputed data set on the HDRA Panel,
association analysis was performed for chromosome six in IND. All associations
were analyzed using a linear mixed model implemented by the gwas() function
within the rrBLUP R package48. Parameters for the gwas() function are as follows:
min.MAF= 0.05, P3D= TRUE, and K= a kinship matrix. The kinship matrix was
computed from the original HDRA array data using the A.mat() function in
rrBLUP48. Three additional principal components (PC)s were included for the ALL
group to control for high-level stratification, while no additional PC covariates
were included for subpopulation-specific analyses, following the approach used in
McCouch et al.13 (Supplementary Fig. 13). Manhattan plots were generated using
the qqman R package49 and a Benjamini–Hochberg false discovery rate was set at
1%50 to deal with multiple testing. Regional plots were generated using a code

based on that provided by the Diabetes Genetics Initiative of the Broad Institute.
All gene annotations used here were taken from the MSUv7 genome assembly
(http://rice.plantbiology.msu.edu/). Local LD associated with significant SNPs was
determined following the method described previously35.

Extended haplotype homozygosity. EHH analysis (Supplementary Fig. 9c) was
performed for the msSNP of the Wx gene using the R package rehh51. A 200-kb
region flanking each side of the focal SNP was used.

Rice Imputation Server. The Rice Imputation Server takes in rice genotypic data
sets from public users, runs steps for data re-formatting and imputation remotely,
and returns imputed data back to users. To accommodate the large number of
parallel tasks that accrue across potential users and per imputation job (12 chro-
mosomes × 10 chunks/chromosome), a Celery queueing framework was imple-
mented for task management. A Graphical User Interface was developed as a web
application to facilitate data set exchange. The Rice Imputation Server can be
accessed at http://rice-impute.biotech.cornell.edu.

Code availability. The script used for running GWA using the imputed HDRA
data set is available at http://ricediversity.org.

Data availability. The full RICE-RP dataset is available at the McCouch group site,
Rice Diversity (ricediversity.org), the SNP-Seek database (http://snp-seek.irri.org/
download.zul), and European Variant Archive (Project accession: PRJEB26328
(https://www.ebi.ac.uk/ena/data/view/PRJEB26328)). Imputed data on the HDRA
Panel may be obtained by subsetting the RICE-RP. The imputed indica data-
set used in our GWA study (based on imputation from the 160K SNPs), along with
the kinship matrix, amylose content dataset, and R script used to run the analysis
may be accessed at Rice Diversity.
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